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off-road trails. Mist nets were 38-mm gauge, 2.6 m tall,

and 6, 9, or 12 m long. We did not bait nets with food.

Because parasite infection prevalence can vary by habitat

(Loiseau et al. 2010), we set nets in or adjacent to early-



process is often employed and rarely explained in the avian

haemosporidian literature, and so we explain it in detail in

Online Resource 1. Individuals for which we could not

assign a distinct lineage were included in analyses of total
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95 individuals (29 %) of 18 species (42 %) and Haemo-

proteus in 55 individuals (17 %) of 18 species (42 %).

Plasmodium infections were more frequent than Haemo-

proteus infections (binomial test, p
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Table 2 Distribution of parasite lineages across host species including multiple infections

Species Code Parasite lineages

OZ01 OZ14 OZ08 OZ06 GAM06 CHI35PL CHI09PL OZ45 OZ09 OZ25 YU01 Unk P

AMGO (19)

AMRO (5) 1

BGGN (5) 1 1

BHCO (6)

BRTH (8) 1 1

CARW (16) 1

CHSP (3)

COGR (3)

COYE (32) 1 1 5

EABL (4) 1

EATO (3) 1

FISP (27) 9 1 1 1

HOFI (4) 1 1

HOSP (12) 1

INBU (50) 25 6 1 1

NOCA (36) 6 2 2 2

NOMO (9) 2 1

OROR (2) 1

REVI (1)

RWBL (3) 1 1 1

SOSP (5) 3 2 2

SWSP (1)

TUTI (1)

WEVI (8) 1

YBCH (29) 4 1 16 1

Total 54 18 17 6 2 2 2 2 1 1 1 6

Species Code Parasite lineages Totals

OZ03 CHI20PA LA01 OZ07 OZ49 NA15 OZ53 NA05 OZ12 CHI08PA TN24 Unk H P H

AMGO (19) 1 0 1

AMRO (5) 1 1 1 2

BGGN (5) 2 0

BHCO (6) 1 1 0 2

BRTH (8) 2 2 2

CARW (16) 1 1 1

CHSP (3) 2 0 2

COGR (3) 2 0 2

COYE (32) 7 0

EABL (4) 2 1 2

EATO (3) 2 1 1 3

FISP (27) 1 1 12 2

HOFI (4) 2 0

HOSP (12) 1 1 1

INBU (50) 1 33 1

NOCA (36) 23 2 1 1 12 27

NOMO (9) 1 2 1 3 4

OROR (2) 1 1 1
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Table 2 continued

Species Code Parasite lineages Totals

OZ03 CHI20PA LA01 OZ07 OZ49 NA15 OZ53 NA05 OZ12 CHI08PA TN24 Unk H P H

REVI (1) 1 0 1

RWBL (3) 3 0

SOSP (5) 7 0

SWSP (1) 1 0 1

TUTI (1) 1 0 1

WEVI (8) 1 0

YBCH (29) 22 0



Host specificity

We recovered 22 cyt b lineages from 144 birds: 11 lineages

were Plasmodium and 11 were Haemoproteus. Of the 22

lineages, 16 (73 %) were obtained from at least two indi-

viduals. Of the 16 lineages that were obtained at least twice,

13 (81 %) were found in more than one host species (me-

dian = 2; mean = 3.5; range 1–12). Each of the nine lin-

eages obtained from only one species was found in only one

(6 lineages) or two (3 lineages) individuals. Host species

with nine or more sampled individuals harbored between

one and seven parasite lineages (Table 2). Twenty indi-

viduals from ten species showed mixed infections; from

these birds, we found 44 infections and were able to identify

the lineage for 37. These 37 infections represented 11 lin-

eages (Table 3), four of which were not recovered from any

bird with a single infection. One lineage (CHI35PL) was

obtained only from two birds with mixed infections.

Another lineage (OZ14) was recovered from five birds with

mixed infections (25 % of the total number of birds with

mixed infections). In other localities in eastern North

America, OZ14 has occurred more frequently in mixed

infections than in any other lineage (V.A. Ellis, personal

observation). OZ14 is considered a generalist parasite that

has been recovered at a high rate from introduced species

such as House Sparrows and European Starlings (Sturnus

vulgaris) (R.E. Ricklefs, personal observation).

Discussion

Our survey and analysis of the haemosporidian parasites of

birds of eastern Tennessee revealed considerable parasite

diversity and complex parasite–host relationships. We

found 22 distinct haemosporidian parasite lineages across

25 host species and determined that some variation in

parasite prevalence is driven by specific host life history

traits; body size, relative abundance, nesting habits, and

migratory behavior all appear to contribute to variation in

prevalence.

Haemosporidian prevalence did not vary among sites

when we examined data by species. This may reflect the

relatively small area from which we sampled, as well as

our modest sample sizes. In addition, haemosporidian

parasite lineages have been shown to respond differently to

environmental variables, such as proximity to open water,

in the same area (Lachish et al. 2011), which could have

erased any site-specific signal in our data. Habitats in our

sites were also relatively homogeneous. Our sites were

within 80 km of one another, and all were within close

proximity to water, which is necessary for reproduction by

the dipteran insect vectors (Bates 1949). Since site was not

a significant predictor variable, we were able to group our

data to analyze potential individual-level and species-level

predictors of parasitism.

Host life history traits and infection prevalence

We found no significant relationships between infection

status and individual-level traits (e.g., host sex, age, and

body condition) in this community, contrary to our original

hypothesis. Our results suggest that the individual-level

traits examined in this study may not be important pre-

dictors of haemosporidian infection across communities.

However, we found several patterns in species-level traits

indicating that aspects of avian life history and ecology

shape, to a limited extent, their parasite community and the

proportion of individuals infected by parasites.

Abundance was positively related to total infection

prevalence across species, consistent with results from

Hochachka and Dhondt (2000) and Brown et al. (2001);

this could be a result of the facilitated transmission of

parasites with increased host abundance (Dobson 2004).

These findings differ from those of Zhang et al. (2014),

who found no relationship, and from those of Ricklefs et al.

(2005), which revealed a U-shaped relationship between

host abundance and parasite prevalence, where the most

abundant and least abundant host species had the highest

infection prevalence. This U-shaped pattern could be due to

high parasite transmission rates in abundant species, and

either high parasite virulence or poor host immunity in less

abundant species (Ricklefs et al. 2005). We cannot deter-

mine the mechanism for the pattern we uncovered or

evaluate whether this relationship is likely to be broadly

observed, but we speculate that the pattern is driven by

vector exposure and feeding rates. We do not have suffi-
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